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Abstract 

In this paper we investigate the application of Krylov methods to compress- 
ible flows, and the effect of implicit boundary conditions on the implicit solution 
of nonlinear problems. Two defect-correction procedures, namely, Approximate 
Factorization (AF) for structured grids, and ILU/GMRES for general grids are 
considered. Also, considered here, is Newton-Krylov matrix-free methods that we 
combine with the use of mixed discretization schemes in the implicitly defined Ja- 
cobian and its preconditioner. Numerical experiments that show the performance 
of our approaches are then presented. 
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1     Introduction 
The implicit discretization of the compressible flows leads to a large sparse linear 
system which needs to be solved at each time step. In the derivation of this system 
one often uses a defect-correction procedure, in which the left-hand side of the 
system is discretized using a lower order approximation than for the right-hand 
side. This is due to storage considerations and computational complexity, and 
also to the fact that the resulting lower order matrix is better conditioned than the 
higher order matrix. The resulting methods are only moderately implicit. In the 
case of structured, body-fitted grids, the linear system can easily be solved using 
approximate factorization (AF), which is among the most widely used methods 
for such grids. For unstructured grids, such techniques are no longer valid, and 
the system is solved using direct or iterative methods. Because of the prohibitive 
computational costs and large memory requirements for the solution of compress- 
ible flows, iterative methods are preferred. In these defect-correction methods, 
which are of practice in most CFD computer codes, the mismatch in the right and 
left hand side operators together with explicit treatment of the boundary condi- 
tions, lead to severely limited CFL number, which results in a slow convergence to 
steady state aerodynamic solutions. Many authors have tried to replace explicit 
boundary conditions with implicit ones (see for instance [19],[15], and [8]). They 
showed that high CFL number can be used, however no clear advantages in terms 
of CPU time as compared to explicit boundary conditions have been drawn. 

We investigate here defect-correction procedures based on Krylov methods; 
more particularly we study the ILU/GMRES methods together with implicit 
treatment of the boundary conditions. We show in particular that, in the context 
of Krylov methods improvements in terms of convergence rate can be achieved 
through the use of implicit boundary conditions as compared to explicit ones. 
However, the attractive Newton's method convergence property cannot be ap- 
proached because of the mismatch of the right and left hand side operators. 
Therefore we propose to use Newton-Krylov matrix-free (see [3]) methods com- 
bined with mixed discretization in the implicitly defined Jacobian-Preconditioner. 
Numerical experiments that show the performance of our approach are then pre- 

sented. 
In the next section, we describe the Newton-Krylov methodology together 

with mixed discretization. We present, in the section 3, the Euler solver. The 
description of the implicit boundary conditions is also given in the section 3. 
Numerical experiments are presented in the section 4. The last section is devoted 
to some remarks and extensions. 



2    Newton-Krylov Methods 

Newton-Krylov methods first proposed by Brown and Saad [3], have been inves- 
tigated for compressible Euler and Navier-Stokes equations using unstructured 
grids in [16], [17], and [7], and for structured grids in [4], and [5]. 

In [16] and [17], the author has applied the matrix-free Newton-Krylov method- 
ology to both the transonic and supersonic compressible Navier-Stokes flows. In 
[4] and [5], the authors have studied a convection-diffusion model problem, full 
potential flows and the transonic compressible Euler flows. They have also pro- 
posed and studied the Newton-Krylov-Schwarz methodology. An application to 

incompressbile flows is reported in [9]. 
Newton-like methods, together with fully implicit linear solvers allow, in prin- 

ciple, a more rapid asymptotic approach to steady states, f(u) = 0, than do 
time-explicit methods or semi-implicit methods based on defect correction. Strict 
Newton methods have the disadvantage of requiring solutions of linear systems 
of equations based on the Jacobian, /u(u), of the true steady nonlinear residual 
and are often impractical in several respects: 

1. Their quadratic convergence properties are realized only asymptotically. 
In early stages of the nonlinear iteration, continuation or regularization is 
typically required in order to prevent divergence. 

2. Some popular discretizations (e.g., using limiters) of f(u) are nondifferen- 
tiable, leaving the Jacobian undefined in a continuous sense. 

3. Even if fu(u) exists, it is often inconvenient or expensive to form either 
analytically or numerically, and may be inconvenient to store. 

4. Even if the true Jacobian is easily formed and stored, it may have a bad 

condition number. 

5. The most popular family of preconditioners for large sparse Jacobians on 
structured or unstructured two- or three-dimensional grids, the incomplete 
factorizations, is difficult to parallelize efficiently. 

In this paper we examine how points (1), (3) and (4) may be addressed through 
Newton-Krylov methods. For point (2) we refer to [18], and for point (5) we refer 

to [4] and [5]. 
The memory requirements and the computational complexity for the higher- 

order matrix representation, whether by analytical or numerical means, are pro- 
hibitive. In this context, matrix-free Newton-Krylov methods, in which the action 
of the Jacobian is required only on a set of given vectors are natural. To solve 
the nonlinear system f(u) = 0, given u°, let ul+1 = ul + XlSul, for / = 0,1,..., 
until the residual is sufficiently small, where 6ul approximately solves the Newton 
correction equation J(ul)8ul — —/(«'), and parameter A' is selected by some line 



search or trust region algorithm [6]. Krylov methods, such as the method of con- 
jugate gradients for symmetric positive definite systems or GMRES for general 
nonsingular systems, find the best approximation of the solution in a relatively 
small-dimensional subspace that is built up from successive powers of the Jaco- 
bian on the initial residual. The Krylov solver used throughout this paper is 
GMRES [13]. 

The action of Jacobian J on an arbitrary Krylov vector w can be approximated 

^ lr 
J{ul)w » - [f(ul + ew) - f{u!)  . 

Finite-differencing with e makes such matrix-free methods potentially much more 
susceptible to finite word-length effects than ordinary Krylov methods [9]. 

The selection of an optimal parameter e, is non trivial. If e is too small then 
the rounding errors made in the numerator are amplified by a factor of order \ 
which leads to an inaccurate result. If on the other hand e is too large then the 
approximation of J(ul)w will be poor. Any reasonable choice of e should attempt 
to reach a compromise between these two difficulties. The technique for choosing 
the scalar e we use here is: 

ii T2
c/l • max{|(«',t;)|,typu,|u|}. 

where |u| = (|ui|,..., |fn|)T, and typu is given value depending on u and the 
problem to be solved. We note here that GMRES may have an advantage over 
other Krylov methods in the matrix-free context in that the vectors v that arise in 
GMRES have unit two-norm, but may have widely varying scale in other Krylov 
methods for nonsymmetric systems. Right preconditioning spoils the perfect unit 
two-norm. For an extended discussion of matrix-free applications of the Jacobian 
in the Krylov context, see [3]. 

Steady aerodynamics applications require the solution of linear systems that 
lack strong diagonal dominance, so it is important to verify that properly-scaled 
matrix-free methods can be employed in this context. 

Although the matrix-free method is attractive because it does not form the 
matrix explicitly, the matrix is still required for preconditioning purposes. In [16], 
[17], and [7] the authors settled for a compromise that uses a block-diagonal pre- 
conditioner. However, most preconditioners require the matrix-explicitly. This 
is true for ILU preconditioner. Therefore, we form only, as in defect-corection 
method only the matrix of a lower order system to precondition the consistent 
higher order system. An approximation to the Jacobian can be used to precon- 
dition the Krylov process. Examples are: 

1. the Jacobian of a lower-order discretization, 

2. the Jacobian of a related discretization that allows economical analytical 
evaluation of elements, and 



3. domain-parallel preconditioners composed of Jacobian blocks on subdo- 
mains of the full problem domain. 

We consider here only cases 1 and 2.  Case 3 can be combined with any of the 
split-discretization techniques (cases 1-2), in principle and is studied in [4] and 

[5]. 
Left preconditioning of the Jacobian with an operator B     can be accommo- 

dated via 
B-lJ{ul)w « - [#-7((u' + ew)) - f{u1)] , 

where f(ul) = B~lf{ul) is stored once, and right preconditioning via 

J^B^w w - [f((ul + eB^w)) - f(ul) 

Right preconditioning is preferable when the focus is on comparing different pre- 
conditioners, since the residual norm measured as a by-product in GMRES and 
used in the termination test is independent of any right preconditioning. On the 
other hand, any left preconditioning changes the residual norm estimate available 
as a by-product in GMRES. Left preconditioning may be preferable when GM- 
RES is applied in practice as the solver for an inexact Newton method. When 
the preconditioning B~x is of high quality, the left-preconditioned residual serves 
as an estimate of the error in the Newton update vector. This leads to a useful 
termination condition when Newton step acceptance tests are based on \\6u\\. 

3     Compressible Euler Equations 

3.1     Governing Equations 

The non-dimensional Euler Equations in three dimensions for the dependent vari- 
able vector Q = [p, pu, pv, pw, e]T are 

Qt + F(Q), + G(Q)y + H(Q)z = 0, (1) 

After changing the variables into the curvilinear coordinates 

T = t,£ = £{x,y,z),T) = j/(x,y,2r),C= C{x,y,z) 

The equations are now expressed in the strong conservation laws as 

QT + (F)t + (G)„ + (H\ = 0, (2) 



where Q and the contravariant flux vectors, F and G, are defined in terms of the 
Cartesian fluxes and the Jacobian determinant of the coordinate system trans- 
formation, through 

Q = J~lQ 
F = j-i({tQ + ZxF + tyG + (zH) 

G = J-1 (VtQ + VxF + VyG + rjzH) 

H = J"1 (CtQ + CxF + (yG + CzH). 

and 

J   = 

(ix iy iz 6 \ 
Vx Vy Vz     Vt 

{,x {,y {,z      {,t 

V o o o   l / 
Sx t,y £z 

Vx Vy Vz 

\ Cx (y (z   ) 

det 

det 

3.2    Finite volume scheme 

By assuming the dependent variables to be constant in the interior of cell(i,j,k), 
and that the flux vectors F, G, and H are constant over the constant £, 77, and £ 
surfaces of the cell, respectively, then an implicit finite volume discretization of 
equation (1) can be written as 

mi - Ql^^V^C + (F$JJe - F^JArjACAr 

Using the flux split formula (see below), the above equations can be written 
as 

AQn + AT(S^F
+
 + F~)n+1 + 8V{G

+ + G~)n+1 + 6C{H+ + H~)n+X) = 0    (4) 

where 8$, for example, is defined by 

k =  -£t[Fi+\l2j,k ~ -fi-l/2,i,fc] (5) 



and Sv and 8^ are defined analogously. The split vector for F is given by 

F = F+ + F~, (6) 

with similar expressions for G and H. F+ is associated with the eigenvalues that 
have positive signs and F~ is associated with the eigenvalues that have negatives 
signs (see Steger-Warming)., and G+,G~,H+,andH~ are defined analogously. 
The implicit split-flux discretization is given by 

[I 4- Ar[{6t(F+ + F~)n+1 + 8t{G
+ + G~)n+1 + 8V{H+ + H~)n+1} 

= -Ar(SlFn + 8e
vG

n + 8\Hn) (7) 

A linearization of first order in time of the above equation yields 

[/ + Ar{8\A+- + 8\A~- + 8^- + 81B-■ + 8\C+- + 8\C--)AQn 

= -Ar(8lFn + 8e
vG

n + 8e
cH

n) (8) 

Where a distinction has been made between the implicit spatial difference op- 
erator and the explicit spatial difference operators by using supersripts i and e, 
respectively. The dots indicate that the difference operators apply to the product 
of the Jacobian matrices with AQn. The matrices A+,A~,B+, B~, C+,andC~ 
are defined by 

dF+ _      dF~ 
A+ = W   A~ = W' (9) 

*-% c-w- 
The finite volume discretization given by equation (3) requires the numeri- 

cal flux at a cell face. These fluxes are computed using the Roe's approximate 
Riemann solver [12]. Three limiters are employed: minmod, Superbee, and Van 
Leer. The Jacobians are evaluated using first-order Roe's scheme, or the flux- 
vector split scheme [14], which corresponds to the true partials of the positive and 
negative flux vectors as described earlier. However, the flux-vector split scheme 
has been shown to give improved convergence rates over the Roe matrices. Be- 
cause the Jacobian matrices corresponding to the flux-vector split scheme work 
better on the left hand side in the solution matrix than the Roe matrices, this 
is the scheme presently being employed in the context of defect correction. This 
results in inconsistent left and right hand side operators. 



Remark 3.1 For most CFD codes, the implicit spatial differences are only first- 
order accurate. Because deriving higher-order accuracy is difficult, and the re- 
sulting matrices are very large and require a lot of storage, large operation count 
in its evaluation, and may be very difficult to invert. 

Remark 3.2 For Roe's scheme, it is difficult to obtain the true Jacobian. Barth 
[1], has obtained such Jacobian in two dimensions. However, for three dimen- 
sions, the evaluation of such Jacobian needs large operation count. 

Following these remarks, the implicit spatial differences in equation (1) are 
approximated, as mentioned above, through a first-order accurate scheme. 

The explicit spatial differences in equation (1) are approximated using the 
higher order formulations of Roe's scheme, that are based on the work of Osher 
and Chakravarthy [11]. 

3.3    Explicit boundary conditions 

The boundary conditions are derived using the locally one-dimensional charac- 
teristic variable boundary conditions, which yields (for the calculations see for 

example [10]): 

3.3.1 Farfield-Subsonic Inflow 

Pb = (1/2)P0 + Pi + sign(Xl
k) poc0[kx(ua - u,-) + ky(va - v,-) + h(wa - w{)] 

Pb = pa + [(Pb-Pa)/c2
0] 

ub = ua + kx[(Pa-Pb)/(p0c0)]sign(Xl) 

vb = va + ky\(Pa-Pb)/{p0c0)]sign(\lk) 

wb = wa + kz[{Pa-Pb)/(poC0)]sign(Xt
k) 

Note that these signs correspond to the sign of the first three eigenvalues, and 
hence this is a means of writing the code for general applications with arbitrary 
orientation of the computational coordinates. The point a is outside the compu- 
tational domain, point b is on the computational boundary, and i is inside the 
computational domain. 

3.3.2 Farfield-Subsonic Outflow 

Pb     =     Pa 

Pb     =     Pa + [(Pb ~ Pa)/C2
0] 

ub = ua + kx[(Pa - Pb)I(p0c0)]s\grv(\\) 

vb = va + ky[(Pa - P6)/(/90c0)]sign(At
fc) 

io6   =   wa + M(P0-P(,)/(/90c0)]sign(A]t) 
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3.3.3 Impermeable Surface 

Ph   =   Pr - +p0c0 

Vfo == t?y rCyifögUr   ~J~   KyVy   ~\~   fC^XVfJ 

Wb   —   wr — kz{kxuT + feyUr + kzwr) 

where the point r is the center of the first cell from the boundary and the minus 
sign in equation (1) is used if r is in the positive k direction from the boundary, 
and the plus sign is used if r is in the negative direction from the boundary. 

3.3.4 Farfield-Supersonic Inflow 

In this case all eigenvalues have the same sign. Since we have an inflow case all 
variables are specified. 

3.3.5 Farfield-Supersonic Outflow 

In this case also, all eigenvalues have the same sign. But now we have an outflow 
case, therefore, all variables must be obtained from the solution in the compu- 
tational domain. All variables are extrapolated from inside the computational 
domain to the boundary. 

3.4    Implicit boundary conditions 

In the implicit form, the above boundary conditions can be written in the form 
of operators formulated as functions of the conservation vector W: 

FB{W) = 0 

and are implemented implicitly through: 

dFB, 

dW 
■SW = -FB{W). 

Using these implicit boundary conditions, we show that starting from a small 
initial CFL number (10), CFL may be adaptively advanced according to: 

CFL;+1 = CFL' • ".{y1'!"1. 
Il/wlr 

This is the key to the successful implementation of Newton-Krylov matrix-free 
method studied in this paper. 



4    Numerical Results 

To test the different methodologies developed here we consider a NACA0012 
steady transonic airfoil at an angle of attack of 1.25 degrees and a freestream Mach 
number of 0.8. We consider two meshes, with 2048 and 4096 cells, respectively. 
We call the first mesh, meshl, while the second will be denoted by mesh2. In all 
computations performed herein the solution obtained agrees with the standard 
one. 

The initial code is an EAGLE-derivative code [10] that employs the discretiza- 
tion described in section 3 with explicit boundary conditions, over a body-fitted 
grid, and which uses a linear solver of an approximate factorization (AF) type 
(see for example [2]). 

We have implemented implicit boundary conditions as described in section 
3. We have also replaced the (AF) solver by ILU/GMRES solver. And we have 
implemented the Newton-Krylov matrix-free methods. 

We first compare the defect-correction procedures of (AF) type and 
ILU/GMRES with explicit boundary conditions on the test case described above. 
Then, we compare these results with those obtained by replacing explicit bound- 
ary conditions by implicit ones. Finally we study the performance of Newton- 
Krylov matrix-free. All calculations performed here are done on the same Sparc20 
machine. 

4.1     Defect-Correction procedures: meshl case 

4.1.1 Explicit boundary conditions 

We compare here the results obtained using approximate factorization (AF) 
method and ILU/GMRES when the boundary conditions are explicit. We ob- 
serve that to reach the same level of accuracy, the CPU time necessary for AF 
method is almost double the time necessary to reach the same level of accuracy 
with the Krylov method (ILU/GMRES) as can be seen in figures 1 and 2, which 
show, respectively, the iteration count versus the steady residual norm and the 
CPU time versus the steady residual norm. Moreover, using (AF) method the 
steady residual norm cannot be dropped to the same final steady residual norm 
reached by the converged solution obtained using ILU/GMRES. As can be seen 
below, finer mesh is needed for the steady residual norm to be dropped to the 
same level as for the Krylov method, when AF is used. 

4.1.2 Implicit boundary conditions 

We first compare different calculations obtained using different CFL numbers. 
The results are presented in figures 3 and 4 where we show a comparison of the 
CPU time versus the steady residual norm. These calculations are performed 



using a CFL number equal to 6.5, 100, and 500 respectively. From these com- 
parisons we can see that using high CFL number improves the convergence rate. 
However, when the CFL number is larger than 100, no further improvement can 
be obtained. This is due to the mismatch of the left and right hand side oper- 
ators. We will see in the next section that this drawback can be removed using 
Newton-Krylov methodology described in section 2. We will now validate the 
CFL strategy described in section 3. In figures 5 and 6 we compare the calcula- 
tions performed with a CFL number of 100 to the calculations performed with 
the CFL strategy described in section 3. This comparison shows the validation of 
using these techniques. It also shows that the converged solution is obtained in 
about the same CPU time. In figure 7, we show the CFL versus iteration count. 
Now we show in figures 8 and 9, comparisons of steady state residual norm ver- 
sus the iteration count and CPU time for the converged solution obtained using 
explicit boundary conditions with a CFL number equal to 6.5 and using implicit 
boundary conditions with a CFL of 100. We observe that an improvement in 
terms of the CPU time is obtained when we use implicit boundary conditions as 
compared to explicit ones. This comparison highlights the gain obtained using 
implicit boundary conditions when Krylov methods are used as linear solvers. We 
should notice that using AF solver, the implicit boundary conditions do not im- 
prove the convergence rate because the AF method is based on an approximation 
of first order to the linear system to be solved. 

4.2     Newton-Krylov matrix-free procedures: meshl case 

We study here the Newton-Krylov matrix-free methodology described in section 
2. The techniques used in the choice of the finite differencing parameter are de- 
scribed in section 2. To take full advantage of the power of Newton's method, and 
thus to allow a more rapid asymptotic convergence to the steady state solution, we 
use the CFL strategy described in section 3, and validated above. The ILU pre- 
conditioner we use here is formed from a lower order discretization and is exactly 
the same as that used already in the defect-correction procedure studied above. 
This results in a mixed Jacobian/Preconditioner discretization. More precisely, 
the explicitly available (Van Leer) first-order flux vector split Jacobian (JVL) is 
used to precondition the implicitly defined (Roe) higher-order flux difference split 
Jacobian (JR) at each implicit time step. In matrix terms, the correction u is 
obtained as the approximate solution of, 

{JVL)~
1
JRU = -{JVLY^IR- 

While in the defect-correction context, this correction was obtained as the 
approximate solution of, 

JVLu = —JR. 

We first compare the results obtained using ILU/GMRES with implicit bound- 
ary conditions and with CFL of 100, and using Newton-Krylov matrix-free. The 
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results are presented in figures 10 and 11, in which we show, respectively, the 
steady residual versus the iteration count and the steady residual versus the CPU 
time. We perform 4 Newton iterations in each implicit time step. The stopping 
criterion corresponds to a steady residual norm of 10-9. 

In figures 12 and 13 we show a comparison of the four methods studied in this 
paper. Clearly, we can see that Newton-Krylov matrix-free outperforms all the 
other three methods. 

To refine our analysis we have performed the same study but on a much finer 
grid. The results are discussed below. 

4.3    Defect-Correction procedures: mesh2 case 

4.3.1 Explicit boundary conditions 

We compare here the results obtained using approximate factorization (AF) 
method and ILU/GMRES when the boundary conditions are explicit. Similarly 
to the meshl case, we observe that in order to reach the same level of accuracy, 
the CPU time necessary for AF method is almost double the time necessary with 
the Krylov method (ILU/GMRES) as can be seen in figures 14 and 15, which 
show, respectively, the iteration count versus the steady residual norm and the 
CPU time versus the steady residual norm. 

4.3.2 Implicit boundary conditions 

As for the meshl case, we first compare different calculations obtained using 
different CFL numbers. The results are presented in figures 16 and 17 where we 
show a comparison of the steady state residual norm versus CPU time. These 
calculations are performed using a CFL number equal respectively to 5, 100, and 
500. These comparisons show again that using high CFL number improves the 
convergence rate. However, when the CFL number is larger than 100, no further 
improvement can be obtained. This is due to the mismatch of the left and right 
hand side operators. We will see in the next section that this drawback can 
be removed using Newton-Krylov methodology described in section 2. We will 
now, validate the CFL strategy described in section 3. In figures 18 and 19 we 
compare the calculations performed with CFL 100 to the calculations performed 
with the CFL strategy described in section 3. This comparison shows again the 
validation of using these techniques. It also shows that the converged solution 
is obtained in about the same CPU time. In figure 20, we show the CFL versus 
iteration count. Now we show in figures 21 and 22, comparisons of steady state 
residual norm versus the iteration count and CPU time for the converged solution 
obtained using explicit boundary conditions with a CFL number equal to 5 and 
using implicit boundary conditions with a CFL number equal to 100. We observe 
that an improvement in terms of the CPU time is obtained when we use implicit 
boundary conditions as compared to explicit ones.   This comparison highlights 

11 



again the gain obtained using implicit boundary conditions when Krylov methods 
are used as linear solvers. 

4.4    Newton-Krylov matrix-free procedures: mesh2 case 

Here, we study here again the Newton-Krylov matrix-free methodology described 
in section 2. The techniques used in the choice of the finite differencing param- 
eter are described in section 2. To take full advantage of the power of Newton's 
method, and thus to allow a more rapid asymptotic convergence to the steady 
state solution, we use the CFL strategy described in section 3, and validated 
above. The ILU preconditioner we use here is formed from a lower order dis- 
cretization and is exactly the same as that used already in the defect-correction 
procedure studied above. This results in a mixed Jacobian/Preconditioner dis- 
cretization. More precisely, the explicitly available (Van Leer) first-order flux 
vector split Jacobian (JVL) is used to precondition the implicitly defined (Roe) 
higher-order flux difference split Jacobian (JR) at each implicit time step. In 
matrix terms, the correction u is obtained as the approximate solution of, 

(JvL)-1JRU=-(JvL)-1fR. 

While in the defect-correction context, this correction was obtained as the 
approximate solution of, 

JVLU = —/R. 

We first compare the results obtained using ILU/GMRES with implicit bound- 
ary conditions and with CFL of 100, and using Newton-Krylov matrix-free. The 
results are presented in figures 23 and 24, in which we show, respectively, the 
steady residual versus the iteration count and the steady residual versus the CPU 
time. We perform 4 Newton iterations in each implicit time step. The stopping 
criterion corresponds to a steady residual norm of 10-9. 

In figures 25 and 26 we show a comparison of the four methods studied in 
this paper. The comparison highlights the efficiency and performance of the 
Newton-Krylov matrix-free method. 

5     Conclusions 

In this paper we have demonstrated the performance of Krylov based methods. 
The convergence rate is improved using implicit boundary conditions as compared 
to explicit ones. The higher-order Jacobian needed in the Newton's method need 
not be computed explicitly in the Newton-Krylov matrix-free context. The use of 
mixed discretization (higher-order) Jacobian / (lower-order) preconditioner, re- 
sults in an efficient preconditioned Newton-Krylov matrix-free algorithm in terms 
of CPU time as has been shown in the numerical experiments presented in this 
study. 

12 
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Figure 1: Steady-state residual versus iteration count for approximate factoriza- 
tion (AF) and ILU/GMRES solvers. 
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Figure 2:  Steady-state residual versus CPU time for approximate factorization 
(AF) and ILU/GMRES solvers. 
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Figure 3:   Steady-state residual versus iteration count for ILU/GMRES solver 
with different CFL: 6.5, 100, and 500. 
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Figure 4:  Steady-state residual versus CPU time for ILU/GMRES solver with 
different CFL: 6.5, 100, and 500. 
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Figure 5:  Steady-state residual versus iteration count for ILU/GMRES solvers 
with CFL constant equal 100, and with adaptively increasing CFL. 

1 1                 1                 1                 1                 1                 1                 1                 1 

1    "\ "ilu-gmresilOOCPU"    
-2 -I   '" "ilu-gmresivCPU"   

2.5 \H - 

-3 
\S - 

3.5 V 

-4 ^s„ 

4.5 \x 

-5 
^\^ 

b.b 

^^^^ 
-6 

1 i             i             i             i             i             i             i 

200   400   600   800   1000   1200   1400   1600   1800   2000 

Figure 6: Steady-state residual versus CPU time for ILU/GMRES solvers with 
CFL constant equal 100, and with adaptively increasing CFL. 
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Figure 7: CFL versus iteration count for ILU/GMRES solvers. 
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Figure 8: Steady state residual versus iteration count for ILU/GMRES solvers 
with explicit boundary conditions and implicit boundary conditions. 
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Figure 9: Steady state residual versus CPU time for ILU/GMRES solvers with 
explicit boundary conditions and implicit boundary conditions. 
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Figure 10:   Steady-state residual versus iteration count for defect correction 
(ILU/GMRES) and Newton-Krylov matrix-free solvers. 
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Figure   11:     Steady-state   residual   versus   CPU   time  for   defect   correction 
(ILU/GMRES) and Newton-Krylov matrix-free solvers. 
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Figure 12: Steady-state residual versus iteration count for approximate factor- 
ization (AF), ILU/GMRES with explict boundary conditions, ILU/GMRES with 
implicit boundary conditions, and Newton-Krylov matrix-free solvers. 
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Figure 13: Steady-state residual versus CPU time for approximate factorization 
(AF), ILU/GMRES with explict boundary conditions, ILU/GMRES with implicit 
boundary conditions, and Newton-Krylov matrix-free solvers. 
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Figure 14:  Steady-state residual versus iteration count for approximate factor- 
ization (AF) and ILU/GMRES solvers. 
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Figure 15: Steady-state residual versus CPU time for approximate factorization 
(AF) and ILU/GMRES solvers. 
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Figure 16: Steady-state residual versus iteration count for ILU/GMRES solver 
with different CFL: 5, 100, and 500. 
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Figure 17: Steady-state residual versus CPU time for ILU/GMRES solver with 
different CFL: 5, 100, and 500. 
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Figure 18: Steady-state residual versus iteration count for ILU/GMRES solvers 
with CFL constant equal 100, and with adaptively increasing CFL. 
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Figure 19: Steady-state residual versus CPU time for ILU/GMRES solvers with 
CFL constant equal 100, and with adaptively increasing CFL. 
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Figure 20: CFL versus iteration count for ILU/GMRES solvers. 
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Figure 21: Steady state residual versus iteration count for ILU/GMRES solvers 
with explicit boundary conditions and implicit boundary conditions. 
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Figure 22: Steady state residual versus CPU time for ILU/GMRES solvers with 
explicit boundary conditions and implicit boundary conditions. 
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Figure 23:    Steady-state residual versus iteration count for defect correction 
(ILU/GMRES) and Newton-Krylov matrix-free solvers. 
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Figure   24:     Steady-state   residual   versus   CPU   time  for   defect   correction 
(ILU/GMRES) and Newton-Krylov matrix-free solvers. 

-10 

A                1                 1 i i  i I 1 T  —t - 
"af-ITRES" - 

"ilugmrese5ITRES" -- 
"ilugmresilOOIT" •- 

"nklTRES" - 
I".  \\ 

_ 
; \    ^^^-^ 

**-^"""^-*^_ 

i \         \ - 

\     v\ 
f  '■■•.._ 

\_ 
- 

i 

1 
s-^Vv. 

- 

1 
j 

- 

i 

i ■  ' i      i      i      i 

- 

500   1000   1500   2000  2500  3000  3500   4000   4500   5000 

Figure 25: Steady-state residual versus iteration count for approximate factor- 
ization (AF), ILU/GMRES with explict boundary conditions, ILU/GMRES with 
implicit boundary conditions, and Newton-Krylov matrix-free solvers. 
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Figure 26: Steady-state residual versus CPU time for approximate factorization 
(AF), ILU/GMRES with explict boundary conditions, ILU/GMRES with implicit 
boundary conditions, and Newton-Krylov matrix-free solvers. 
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Figure 27: Pressure coefficient. 
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